AI versus Big Data: What’s the Difference?

Artificial intelligence is fueled by computers, big data, and algorithms. Big data is the input for business intelligence capabilities. Big data represents the large volume of data that often needs to go through a data quality process of cleansing before it can be turned into business insights. Artificial intelligence, on the other hand, occurs when computers act on that data input. Artificial intelligence changes behavior based on findings and then modifies the approach. Big data analytics are more about looking for a given piece of data to produce insight versus having the computer act on the results that are found. Big data analytics produces insights through the identification of patterns through things like the sequential analysis, leveraging technologies like Hadoop that can analyze both structured and unstructured data. While artificial intelligence can also be based off structured and unstructured data, with artificial intelligence, the computer learns from that big data and keeps collecting it and then acting upon it.

Industry examples of how big data is being leveraged in artificial intelligence range from consumer goods to the creative arts to media. For example, in consumer goods, Hello Barbie runs off of machine learning where the microphone on Barbie’s necklace records what the child says and analyzes it to determine a fitting response. The server gets the response back to Barbie in under a second. In the creative arts, music-generating algorithms are being used from newspapers and speeches to create themes for new lyrics and help musicians better understand target audiences to increase record sales. In media, the BBC project, Talking with Machines lets listeners engage in conversation with their smart devices to insert their perspective to become part of the story creation.

Artificial intelligence influences big data analytics and vice-versa. Artificial Intelligence uses big data to run algorithms, like machine learning algorithms. In machine learning algorithms, training and test datasets are used for the analysis.  Big data analytics can be useful to prepare those test and training datasets for machine learning. Also, access to big data allows artificial intelligence to continue to learn more additional data sources. Machine learning algorithms can reproduce behaviors based on big data that is feeding processors that it puts through a trial and error type of algorithms. 

Essentially big data is what can teach artificial intelligence, and the rise of artificial intelligence is complementary to the exponential growth of big data. Understanding the basics of how big data and artificial intelligence intersect is important as they are both here to stay and have the potential to boost, not only revenue but innovative and creative capabilities for businesses.

#AI #BigData